Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Open Res Eur ; 2: 105, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37645283

RESUMEN

Background: This work studied the use of the organic fertilizers DTPA-Fe and EDDS-Fe as iron chelates for solar driven photo-Fenton process at natural pH. This process was proposed to investigate its performance on removing a mixture of agrochemicals (propiconazole, imidacloprid and diuron) from pineapple processing wastewater to obtain a suitable effluent to be reused in the agricultural sector. Methods: Experiments were carried out in a solar simulator with a stirred cylindric photoreactor, with a volume of 150 mL and controlled temperature (20°C). The first set of experiments was carried out with ultrapure water to determine optimal iron and H 2O 2 concentrations. The second was performed with simulated wastewater of pineapple processing. Results: The optimized operational conditions for both iron complexes were 10 mg L -1 of Fe (III) and 25 mg L -1 of H 2O 2, since more than 80% of micropollutants (MP) (at an initial concentration of 1 mg L -1 of each compound) were removed in only 20 min with both DTPA-Fe and EDDS-Fe. The effect of organic matter and inorganic salts on radicals scavenging and chelates stability was also investigated in the experiments performed with synthetic pineapple processing wastewater. The results disclosed differences depending on the iron complex. Nitrites were the principal component influencing the tests carried out with EDDS-Fe. While carbonates at low concentration only significantly affected the experiments performed with DTPA-Fe, they were the major influence on the MPs removal efficiency decrease. In contrast, the presence of Ca 2+ and Mg 2+ only influence on this last one. Finally, the results of phytotoxicity disclosed the suitability of treated effluent to be reused in the agricultural sector.  Conclusions: This work demonstrated that solar powered photo-Fenton catalysed by iron fertilizer EDDS is a suitable technology for depolluting water streams coming from pineapple processing plants at circumneutral pH, and its subsequent reuse for crop irrigation.

2.
Sci Total Environ ; 803: 149873, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34525738

RESUMEN

Nowadays, reaction mechanisms of photo-Fenton process with chelated iron are not yet clearly defined. In this study, five organic fertilizers were used as iron complexes to investigate the role of sunlight and oxygen in photo-Fenton at near neutral pH. UV absorbance and stability constant of each selected iron chelate is different, and this work demonstrates that these parameters affect the reaction mechanisms in SMX degradation. Irradiation experiments without H2O2 revealed that only EDDS-Fe and DTPA-Fe achieved SMX degradation, but different iron release. These results, together with soluble oxygen free experiments, allowed the proposal of complementary reaction mechanisms to those of the classical photo-Fenton. The proposed mechanisms start through the potential photoexcitation of the iron complex, followed by subsequent oxygen-mediated hydroxyl radical generation reactions that are different for EDDS-Fe and DTPA-Fe. Moreover, irradiation experiments using EDTA-Fe and HEDTA-Fe had negligible SMX degradation despite iron release was observed, evidencing the differences between iron chelates.


Asunto(s)
Luz Solar , Contaminantes Químicos del Agua , Fertilizantes , Peróxido de Hidrógeno , Concentración de Iones de Hidrógeno , Quelantes del Hierro , Oxidación-Reducción , Oxígeno
3.
J Hazard Mater ; 415: 125658, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-33752085

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic has challenged societies around the globe. Technologies based on ozone, a powerful oxidant, have been evaluated to inactivate this virus in aerosols and fomites. However, the high data diversity hinders the possibility of establishing a common ground for determining best practices for the use of these technologies. Furthermore, there is a lack of consensus regarding which are the main mechanisms of ozone virus inactivation. This critical review examined the most relevant information available regarding ozone application in gas-phase for different viruses inactivation (including recent publications dealing with SARS-CoV-2), and pointed towards envelope alteration as the main reaction pathway for enveloped viruses, such as is the case of SARS-CoV-2. It could also be concluded that gaseous ozone can be indeed an effective disinfectant, successfully inactivating viruses such us influenza A H1N1, MERS-CoV, SARS-CoV-1 or even SARS-CoV-2 in aerosols or fomites. In reviewed works, low ozone exposures, just around 0.1-0.4 mg L-1 min, achieve about 4 log10 of inactivation in aerosols, while exposures between 1 and 4 mg L-1 min may be needed to guarantee an inactivation of 3-4 log10 in different fomites. Although further studies are required, ozone is an effective candidate to be used against SARS-CoV-2 or other viruses in surfaces and indoor locations.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Ozono , Humanos , SARS-CoV-2 , Inactivación de Virus
4.
J Environ Manage ; 283: 111975, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33508550

RESUMEN

Combined sewer overflows (CSO), generated during the wet weather flow from the combination of the inflow and stormwater runoff in sewer system, result in an overflow of untreated wastewater from sewer system, which might ultimately contain different micropollutants (MPs). In this study, a coagulation-flocculation-sedimentation (CFS) pretreated CSO spiked with MPs was treated by catalytic ozonation using carbon, iron, and peroxide-based catalysts. The catalysts were characterized and their activity on MPs removal was studied at two different ozone (O3) doses (5 and 10 mg L-1). The effect of the treatment on the spiked CSO effluent was also assessed from the acute toxicity of the effluent using Microtox®, Yeast, and Macrophage cell-line toxicity assay tests. All the carbon-based catalysts showed large surface area, which was strongly influenced by the activation technique in the preparation of the catalysts. The CFS treatment strongly reduced the turbidity (≥60%) but had marginal effect on the UV254, dissolved organic carbon (DOC), and pH. Sludge Based Carbon (SBC) showed strong adsorption capacity (≥60% removal efficiency) for all MPs studied compared to other carbon and iron-based catalysts. Ozonation alone was effective for the degradation of easily oxidizable MPs (sulfamethoxazole, mecoprop, and 2,4-dichlorophenoxyl acetic acid), achieving more than 80% degradation efficiency at 10 mg L-1 of ozone, but not effective for atrazine (≤60% degradation efficiency) at similar O3 dose. Catalytic ozonation (at 10 mg L-1 O3 dose) improved the degradation of the MPs at low catalyst dosage but higher dosage strongly inhibited their degradation. In all cases, the effluents showed negligible acute toxicity, indicating the suitability of the process for the treatment of CSO.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Floculación , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis , Tiempo (Meteorología)
5.
Sci Total Environ ; 736: 139605, 2020 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-32502784

RESUMEN

Nowadays photoactivation mechanism of titanium dioxide nanoparticles (TiO2 NPs) and reactive species involved in saline waters is not sufficiently established. In this study, TiO2 photocatalytic process under simulated solar irradiation was evaluated in synthetic seawater and compared with deionized water, using sulfamethoxazole (SMX) as model organic compound. For a TiO2 concentration of 100 mg L-1, SMX degradation resulted two times slower in seawater than in deionized water by the determination of their pseudo-first order rate constants of 0.020 min-1 and 0.041 min-1, respectively. Selected scavenging experiments revealed no significant contribution of hydroxyl radicals (OH) on the degradation process in seawater, while these radicals contributed to circa 60% on the SMX depletion in deionized water. Instead, the involvement of reactive halogen species (RHS) as main contributors for the SMX degradation in seawater could be established. A mechanism for the RHS generation was proposed, whose initiation reactions involve halides with the TiO2 photogenerated holes, yielding chlorine and bromine radicals (Cl and Br) that may later generate other RHS. Production of RHS was further confirmed by the identification of SMX transformation products (TPs) and their evolution over time, carried out by liquid chromatography-mass spectrometry (LC-MS). SMX transformation was conducted through halogenation, dimerization and oxidation pathways, involving mainly RHS. Most of the detected transformation products accumulated over time (up to 360 min of irradiation). These findings bring concerns about the viability of photocatalytic water treatments using TiO2 NPs in saline waters, as RHS could be yielded resulting in the generation and accumulation of halogenated organic byproducts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...